SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development.
نویسندگان
چکیده
BACKGROUND Kallmann syndrome (KS) is a genetic disorder associating pubertal failure with congenitally absent or impaired sense of smell. KS is related to defective neuronal development affecting both the migration of olfactory nerve endings and GnRH neurons. The discovery of several genetic mutations responsible for KS led to the identification of signaling pathways involved in these processes, but the mutations so far identified account for only 30% of cases of KS. Here, we attempted to identify new genes responsible for KS by using a pan-genomic approach. METHODS From a cohort of 120 KS patients, we selected 48 propositi with no mutations in known KS genes. They were analyzed by comparative genomic hybridization array, using Agilent 105K oligonucleotide chips with a mean resolution of 50 kb. RESULTS One propositus was found to have a heterozygous deletion of 213 kb at locus 7q21.11, confirmed by real-time qPCR, deleting 11 of the 17 SEMA3A exons. This deletion cosegregated in the propositus' family with the KS phenotype, that was transmitted in autosomal dominant fashion and was not associated with other neurological or non-neurological clinical disorders. SEMA3A codes for semaphorin 3A, a protein that interacts with neuropilins. Mice lacking semaphorin 3A expression have been showed to have a Kallmann-like phenotype. CONCLUSIONS SEMA3A is therefore a new gene whose loss-of-function is involved in KS. These findings validate the specific role of semaphorin 3A in the development of the olfactory system and in neuronal control of puberty in humans.
منابع مشابه
Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism.
Kallmann syndrome (KS) is a genetic disease characterized by hypogonadotropic hypogonadism and impaired sense of smell. The genetic causes underlying this syndrome are still largely unknown, but are thought to be due to a developmental defect in the migration of gonadotropin-releasing hormone (GnRH) neurons. Understanding the causes of the disease is hampered by lack of appropriate mouse models...
متن کاملSEMA3A, a Gene Involved in Axonal Pathfinding, Is Mutated in Patients with Kallmann Syndrome
Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phen...
متن کاملNegative Regulation of Semaphorin-3A Expression in Peripheral Blood Mononuclear Cells Using MicroRNA-497-5p
Background: Semaphorin-3A (Sema3A), as a secreted semaphorin, is an immune modulator molecule participating in the pathogenesis of autoimmune diseases. MicroRNAs (miRNAs) modulate the target-gene expression at the post-transcriptional level. It has been proposed that miRNAs may be crucial to the modulation of the function of semaphorins. Previous findings have proven that miR-497-5p is upregula...
متن کاملPlexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A
In the developing nervous system axons navigate with great precision over large distances to reach their target areas. Chemorepulsive signals such as the semaphorins play an essential role in this process. The effects of one of these repulsive cues, semaphorin 3A (Sema3A), are mediated by the membrane protein neuropilin-1 (Npn-1). Recent work has shown that neuropilin-1 is essential but not suf...
متن کاملSemaphorin 3A is required for guidance of olfactory axons in mice.
Semaphorin 3A (Sema3A) is a membrane-associated secreted protein that has chemorepulsive properties for neuropilin-1 (npn-1)- expressing axons. Although mice lacking the Sema3A protein display skeletal abnormalities and heart defects, most axonal projections in the CNS develop normally. We show here that Sema3A is expressed in the lamina propria surrounding the olfactory epithelium (OE) and by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2012